MOLECULAR CONNECTIVITY INDICES REVISITED

Milan Kunz

Chemopetrol, Research Institute of Macromolecular Chemistry, 656 49 Brno

Received March 3, 1989 Accepted August 25, 1989

It is shown that the product $v_i v_j$ of degrees v of vertices *ij*, incident with the edge *ij*, is the number of paths of length 1, 2, and 3 in which the edge is in the center. The unified connectivity index $\chi_m = \sum_e (v_i v_j)^m$, where the sum is made over all edges, with m = 1, is the sum of the number of edges, the Platt number and the polarity number. And it is identical with the half sum of the cube A^3 of the adjacency matrix A. The Randić index $\chi_{-1/2}$ of regular graphs does not depend on their connectivity.

Recent reviews^{1,2} of topological indices of chemical graphs show that the development of this field is very intensive. There are many topological indices, new ones are invented³ and thus their ordering becomes very important.

The topological indices are usually⁴ divided into two groups wheather are based on the adjacency matrix $\boldsymbol{A}(a_{ii})$ or on the distance matrix $\boldsymbol{D}(d_{ij})$.

The number of bonds $A = 1/2 \sum a_{ij} = 1/2 \sum v_i$ where v_i is the degree of the vertex *i* (usually in the hydrogen supressed graph).

The Zagreb group indices

$$M_1 = \sum_{v} v_i^2$$
, $M_2 = \chi_1 = \sum_{e} (v_i v_j)$

The Randić connectivity index $\chi_{-1/2} = \sum_{e} (v_i v_j)^{-1/2}$. The sums \sum_{v} are made over all vertices of the graph, the sums \sum_{i} over all its edges, the sums \sum_{v} over all elements.

The Randić index was generalized in the form

$${}^{\mathbf{h}}\chi_{-1/2} = \sum_{\mathbf{h}} (v_{\mathbf{i}}v_{\mathbf{j}}v_{\mathbf{k}}^{"})^{-1/2},$$

where h is the path of length h.

The Platt index $F = \sum_{e} e_k$, where e_k is the degree of the edge k, the sum of edges adjancent to the edge k: $e_k = (v_i - 1) + (v_j - 1)$. The Platt index is twice the number of paths length 2 in a graph. It is known that

$$F = \sum_{v} v_i(v_i - 1) = M_1 - 2A$$
.

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

The other group of topological indices is based on the distance matrix **D** (d_{ij}) . It is the Wiener index $w = 1/2 \sum d_{ij}$ and the polarity number p, which is the sum of all selfavoiding paths of length 3 in the graph. Obviously A and F measure distances, too.

Altenburg⁵ introduced the polynomial $w = \sum g_h d_h$, where g_h is half the frequency number of distances d_h in **D**.

In another paper⁶, he unified the molecular connectivity indices M_2 and $\chi_{-1/2}$ as $\chi_m = \sum_e (v_i v_j)^m$, $m \neq 0$, and studied their relations with w and p. Altenburg did not explain why he excluded the case of m = 0. Because $(v_i v_j)^0 = 1$, χ_0 is simply the number of edges in a graph.

RESULTS

The relation between χ_m and w, observed by Altenburg, can be explained by the fact that product $v_i v_j$ counts the selfavoiding paths of length 1, 2, 3 in which the edge *ij* is incident as the central edge, if it exists.

The proof short:

Path of length 1 Paths of length 2: $(v_i - 1) + (v_j - 1)$ Paths of length 3: $(v_i - 1)(v_j - 1)$ Sum: $v_i v_j$

In χ_1 , the sum is made over all edges. Paths of length 1 are counted only once, paths of the length 3 too, since each edge *ij* is in the centre of the counted paths provided that the path does not form a triangle, then it is counted thrice. The path, of lenght 2 are counted twice with both their edges, Thus, with rare exceptions, $M_2 = \chi_1 = A + F + p$.

This is the beginning of the Altenburg polynom (there is 3p, of course), which makes the greatest or regular contribution of w. That explains regularities observed by Altenburg at χ_1 , for other m changes are rather regular. The relation can be approximated at alkanes by the formula $\chi_m = (n - 1) \exp(am)$. (See Fig. 1).

If we try to analyze the generalized Randić index similarly, the product $v_x v_y v_z$ can be the sum of terms $v_x v_y$, $v_y v_z$ counting paths of length 1, 2, 3 $(v_x - 1)(v_y - 1)$ counting paths of length 4, $(v_x - 1)(v_y - 2)(v_z - 1)$ counting monosubstituted pentane chains, but is it not possible to obtain a balance. It seems that the succes of the use of ${}^{h}\chi_{m}$ was spurious, due to specific properties of carbon atoms, where $v_i \leq 4$.

Following Altenburg, it is possible to generalize the Platt index as $\chi_m : F_m = \sum_e [(v_i - 1) + (v_j - 1)]^m$. It is shown of Fig. 1, that both indices behave similarly.

Some important conclusions can be made from orderings of normal and branched alkanes at different m.

Randić⁷ correlated the enthalpies of formation of the gaseous alkanes ΔH_f^0 by the three parameter function

$$\Delta H_{\rm f}^0 = 50\chi_{-1/2} - 46A - 38 \, \rm kJ/mol \, .$$

The reversed order of branched alkanes against normal ones shows that m in χ_m should be positive in this case, or it should be used the Smolenskii additivity function⁴ or kappa indices⁸.

Recently Gao and Hosoya⁹ proposed a new index A^3 as the half sum of the off diagonal elements of the cube of the adjancency matrix **A**. These elements count the number of all paths of length 3 in a graph. The number of selfavoiding paths is 2p. On each edge there are two selfreturning path $(i \rightarrow j \text{ and } j \rightarrow i)$, on a chain of two edges are 4 selfreturning paths of length 3 (e.g. on i - j - k there are $i \rightarrow j \rightarrow k \rightarrow j$, $j \rightarrow i \rightarrow j \rightarrow k, j \rightarrow k \rightarrow j \rightarrow i; k \rightarrow j \rightarrow i \rightarrow j$). On the diagonal of **D**³ are counted triangles, each 3 times on all its vertices, everytime with both orientations. This gives another interpretation of χ_1 , it is half of the number of all paths of length 3 in a graph and $\chi_1 = 1/2A^3$. The diagonal elements should be counted, too.

But the specific case of alkanes does not mean that Randić index $\chi_{-1/2}$ is superfluous. At regular graphs $v_i = v_j$ and we have

$$\chi_{\rm m} = \sum_e v_{\rm i}^{2\,{\rm m}}$$

FIG. 1

Dependence of χ_m and F_m on *m*. The relation of the generalized connectivity index χ_m and of the generalized Platt number F_m with *m* is on the logarithmic scale approximately linear. The parameter *m* changes the ranking of linear alkanes against branched ones. \bigcirc Et, \bigcirc Pr, \bigcirc n Bu, \otimes tert. Bu, \bigcirc n Oct, \oplus 2,2,3,3 tetra Me Bu, \bigcirc S_g, \bigcirc all stars If we replace the sum over all edges by the sum over all vertices as at the Platt number, we get $\chi_m = n v_i^{2m+1}/2$ and $\chi_{-1/2} = n/2$.

The Randić index of regular graphs does not depend on their connectivity, which is contrary to its name. E.g. hydrogen depleted cubane, cyclooctane and a set of 4 ethanes have the Randić index 4 despite that their connectivities are 3, 2 and 0, respectively.

This can be compared with χ_m of stars $(n-1)^{m+1}$.

The Randić index does not measure connectivity but it is a very elegant measure of the regularity of a graph.

REFERENCES

- 1. Stankevich M. I., Stankevich I. V., Zefirov N. S.: Usp. Khim 57, 337 (1988).
- 2. Hladká E., Matyska L.: Chem. Listy 82, 1009 (1988).
- 3. Kunz M.: Collect. Czech. Chem. Commun. 54, 2148 (1989).
- 4. Balaban A. T., Motoc I., Bonchev D., Mekenyan O.: Topics Curr. Chem. 114, 21 (1983).
- 5. Altenburg K.: Kolloid-Z. Z. Polym. 178, 112 (1961).
- 6. Altenburg K.: Z. Phys. Chem. (Leipzig) 261, 389 (1980).
- 7. Randić M.: J. Am. Chem. Soc. 97, 6609 (1975).
- Kier L. B. in: QSAR in Drug Design and Toxicology (D. Hadži and B. Jerman-Blažić, Eds). Elsevier, Amsterdam 1987.
- 9. Gao Y., Hosoya H.: Bull. Chem. Soc. Jpn. 61, 3093 (1988).

Translated by the author.