MOLECULAR CONNECTIVITY INDICES REVISITED

Milan Kunz
Chemopetrol, Research Institute of Macromolecular Chemistry, 65649 Brno

Received March 3, 1989
Accepted August 25, 1989

Abstract

It is shown that the product $v_{i} v_{j}$ of degrees v of vertices $i j$, incident with the edge $i j$, is the number of paths of length 1,2 , and 3 in which the edge is in the center. The unified connectivity index $\chi_{\mathrm{m}}=\sum_{e}\left(v_{\mathrm{i}} v_{j}\right)^{\mathrm{m}}$, where the sum is made over all edges, with $m=1$, is the sum of the number of edges, the Platt number and the polarity number. And it is identical with the half sum of the cube \boldsymbol{A}^{3} of the adjacency matrix \boldsymbol{A}. The Randić index $\chi_{-1 / 2}$ of regular graphs does not depend on their connectivity.

Recent reviews ${ }^{1,2}$ of topological indices of chemical graphs show that the development of this field is very intensive. There are many topological indices, new ones are invented ${ }^{3}$ and thus their ordering becomes very important.

The topological indices are usually ${ }^{4}$ divided into two groups wheather are based on the adjacency matrix $\boldsymbol{A}\left(a_{\mathrm{ij}}\right)$ or on the distance matrix $\boldsymbol{D}\left(d_{\mathrm{ij}}\right)$.

The number of bonds $A=1 / 2 \sum a_{\mathrm{ij}}=1 / 2 \sum v_{\mathrm{i}}$ where v_{i} is the degree of the vertex i (usually in the hydrogen supressed graph).

The Zagreb group indices

$$
M_{1}=\sum_{v} v_{i}^{2}, \quad M_{2}=\chi_{1}=\sum_{e}\left(v_{i} v_{\mathrm{j}}\right)
$$

The Randić connectivity index $\chi_{-1 / 2}=\sum_{e}\left(v_{i} v_{\mathrm{j}}\right)^{-1 / 2}$. The sums \sum_{v} are made over all vertices of the graph, the sums \sum_{e} over all its edges, the sums \sum over all elements.

The Randić index was generalized in the form

$$
{ }^{\mathbf{h}} \chi_{-1 / 2}=\sum_{h}\left(v_{i} v_{j} v_{\mathbf{k}}\right)^{-1 / 2},
$$

where h is the path of length h.
The Platt index $F=\sum_{e} e_{\mathrm{k}}$, where e_{k} is the degree of the edge k, the sum of edges adjancent to the edge $k: e_{\mathrm{k}}=\left(v_{\mathrm{i}}-1\right)+\left(v_{\mathrm{j}}-1\right)$. The Platt index is twice the number of paths length 2 in a graph. It is known that

$$
F=\sum_{v} v_{\mathrm{i}}\left(v_{\mathrm{i}}-1\right)=M_{1}-2 A
$$

The other group of topological indices is based on the distance matrix $\boldsymbol{D}\left(d_{\mathrm{ij}}\right)$. It is the Wiener index $w=1 / 2 \sum d_{\mathrm{ij}}$ and the polarity number p, which is the sum of all selfavoiding paths of length 3 in the graph. Obviously A and F measure distances, too.

Altenburg ${ }^{5}$ introduced the polynomial $w=\sum g_{\mathrm{h}} d_{\mathrm{h}}$, where g_{h} is half the frequency number of distances d_{h} in \boldsymbol{D}.

In another paper ${ }^{6}$, he unified the molecular connectivity indices M_{2} and $\chi_{-1 / 2}$ as $\chi_{\mathrm{m}}=\sum_{e}\left(v_{\mathrm{i}} v_{\mathrm{j}}\right)^{\mathrm{m}}, m \neq 0$, and studied their relations with w and p. Altenburg did not explain why he excluded the case of $m=0$. Because $\left(v_{i} v_{\mathrm{j}}\right)^{0}=1$, χ_{0} is simply the number of edges in a graph.

RESULTS

The relation between χ_{m} and w, observed by Altenburg, can be explained by the fact that product $v_{\mathrm{i}} v_{\mathrm{j}}$ counts the selfavoiding paths of length $1,2,3$ in which the edge $i j$ is incident as the central edge, if it exists.
The proof short:
Path of length 1
1
Paths of length 2: $\left(v_{\mathrm{i}}-1\right)+\left(v_{\mathrm{j}}-1\right) \quad v_{\mathrm{i}}+v_{\mathrm{j}}-2$
Paths of length 3: $\left(v_{\mathrm{i}}-1\right)\left(v_{\mathrm{j}}-1\right) \quad v_{\mathrm{i}} v_{\mathrm{j}}-v_{\mathrm{i}}-v_{\mathrm{j}}+1$
Sum: $v_{i} v_{j}$
In χ_{1}, the sum is made over all edges. Paths of length 1 are counted only once, paths of the length 3 too, since each edge $i j$ is in the centre of the counted paths provided that the path does not form a triangle, then it is counted thrice. The path, of lenght 2 are counted twice with both their edges, Thus, with rare exceptions, $M_{2}=\chi_{1}=A+F+p$.

This is the beginning of the Altenburg polynom (there is $3 p$, of course), which makes the greatest or regular contribution of w. That explains regularities observed by Altenburg at χ_{1}, for other m changes are rather regular. The relation can be approximated at alkanes by the formula $\chi_{\mathrm{m}}=(n-1) \exp (a m)$. (See Fig. 1).

If we try to analyze the generalized Randić index similarly, the product $v_{x} v_{y} v_{z}$ can be the sum of terms $v_{\mathrm{x}} v_{\mathrm{y}}$, $v_{\mathrm{y}} v_{\mathrm{z}}$ counting paths of length $1,2,3\left(v_{\mathrm{x}}-1\right)\left(v_{\mathrm{y}}-1\right)$ counting paths of length $4,\left(v_{x}-1\right)\left(v_{y}-2\right)\left(v_{z}-1\right)$ counting monosubstituted pentane chains, but is it not possible to obtain a balance. It seems that the succes of the use of ${ }^{\mathrm{h}} \chi_{\mathrm{m}}$ was spurious, due to specific properties of carbon atoms, where $v_{\mathrm{i}} \leqq 4$.

Following Altenburg, it is posible to generalize the Platt index as $\chi_{\mathrm{m}}: F_{\mathrm{m}}=\sum_{e}$. . $\left[\left(v_{\mathrm{i}}-1\right)+\left(v_{\mathrm{j}}-1\right)\right]^{\mathrm{m}}$. It is shown of Fig. 1, that both indices behave similarly.

Some important conclusions can be made from orderings of normal and branched alkanes at different m.

Randić ${ }^{7}$ correlated the enthalpies of formation of the gaseous alkanes $\Delta H_{\mathrm{f}}^{0}$ by the three parameter function

$$
\Delta H_{\mathrm{f}}^{0}=50 \chi_{-1 / 2}-46 A-38 \mathrm{~kJ} / \mathrm{mol}
$$

The reversed order of branched alkanes against normal ones shows that m in χ_{m} should be positive in this case, or it should be used the Smolenskii additivity function ${ }^{4}$ or kappa indices ${ }^{8}$.

Recently Gao and Hosoya ${ }^{9}$ proposed a new index A^{3} as the half sum of the off diagonal elements of the cube of the adjancency matrix A. These elements count the number of all paths of length 3 in a graph. The number of selfavoiding paths is $2 p$. On each edge there are two selfreturning path $(i \rightarrow j$ and $j \rightarrow i)$, on a chain of two edges are 4 selfreturning paths of length 3 (e.g. on $i-j-k$ there are $i \rightarrow j \rightarrow k \rightarrow j$, $j \rightarrow i \rightarrow j \rightarrow k, j \rightarrow k \rightarrow j \rightarrow i ; k \rightarrow j \rightarrow i \rightarrow j$). On the diagonal of D^{3} are counted triangles, each 3 times on all its vertices, everytime with both orientations. This gives another interpretation of χ_{1}, it is half of the number of all paths of length 3 in a graph and $\chi_{1}=1 / 2 A^{3}$. The diagonal elements should be counted, too.

But the specific case of alkanes does not mean that Randić index $\chi_{-1 / 2}$ is superfluous. At regular graphs $v_{\mathrm{i}}=v_{\mathrm{j}}$ and we have

$$
\chi_{\mathrm{m}}=\sum_{e} v_{\mathrm{i}}^{2 \mathrm{~m}}
$$

Fig. 1
Dependence of χ_{m} and F_{m} on m. The relation of the generalized connectivity index χ_{m} and of the generalized Platt number F_{m} with m is on the logarithmic scale approximately linear. The parameter m changes the ranking of linear alkanes against branched ones. O Et, $(\operatorname{Pr}, \odot \mathrm{n} \mathrm{Bu}, \otimes$ tert. Bu , $\bullet \mathrm{n}$ Oct, \oplus $2,2,3,3$ tetra $\mathrm{Me} \mathrm{Bu}, \odot \mathrm{S}_{8}, \odot$ all stars

If we replace the sum over all edges by the sum over all vertices as at the Platt number, we get $\chi_{\mathrm{m}}=n v_{\mathrm{i}}^{2 \mathrm{~m}+1} / 2$ and $\chi_{-1 / 2}=n / 2$.

The Randić index of regular graphs does not depend on their connectivity, which is contrary to its name. E.g. hydrogen depleted cubane, cyclooctane and a set of 4 ethanes have the Randić index 4 despite that their connectivities are 3, 2 and 0 , respectively.
This can be compared with χ_{m} of stars $(n-1)^{m+1}$.
The Randic index does not measure connectivity but it is a very elegant measure of the regularity of a graph.

REFERENCES

1. Stankevich M. I., Stankevich I. V., Zefirov N. S.: Usp. Khim 57, 337 (1988).
2. Hladká E., Matyska L.: Chem. Listy 82, 1009 (1988).
3. Kunz M.: Collect. Czech. Chem. Commun. 54, 2148 (1989).
4. Balaban A. T., Motoc I., Bonchev D., Mekenyan O.: Topics Curr. Chem. 114, 21 (1983).
5. Altenburg K.: Kolloid-Z. Z. Polym. 178, 112 (1961).
6. Altenburg K.: Z. Phys. Chem. (Leipzig) 261, 389 (1980).
7. Randić M.: J. Am. Chem. Soc. 97, 6609 (1975).
8. Kier L. B. in: QSAR in Drug Design and Toxicology (D. Hadži and B. Jerman-Blažić, Eds). Elsevier, Amsterdam 1987.
9. Gao Y., Hosoya H.: Bull. Chem. Soc. Jpn. 61, 3093 (1988).

Translated by the author.

